PIANC Smart Rivers 2022
Reviewing Presentation documents
Topic:
Inland Navigation Structure
Logistics
River System Management
Smart Shipping
Special Sessions
Waterway Infrastructure
Title:
Author(s):
Author
1
Name:
Affiliations:
Region:
Afghanistan
Albania
Algeria
America
Andorra
Angola
Antigua and Barbuda
Argentina
Armenia
Aruba
Australia
Austria
Azerbaijan
Bahamas
Bahrain
Bangladesh
Belarus
Belgium
Belize
Benin
Bermuda
Bhutan
Bolivia
Bosnia and Barbados
Bosnia and Herzegovina
Botswana
Brazil
British Virgin Islands
Brunei
Bulgaria
Burkina Faso
Burundi
Cambodia
Cameroon
Canada
Cape Verde
Cayman Islands
Central African Republic
Chad
Chile
China
China(Hong Kong)
China(Macao)
China(Tai wan)
Colombia
Comoros
Costa Rica
Croatia
Cuba
Cyprus
Czech Republic
Democratic Republic of the Congo
Denmark
Djibouti
Dominica
Dominican Republic
Ecuador
Egypt
El Salvador
Equatorial Guinea
Eritrea
Estonia
Ethiopia
Falkland Islands
Faroe Islands
Fiji
Finland
France
Gabon
Gambia
Georgia
Germany
Ghana
Gibraltar
Greece
Grenada
Guatemala
Guinea
Guinea-Bissau
Guyana
Haiti
Honduras
Hungary
Iceland
India
Indonesia
Iran
Iraq
Ireland
Israel
Italy
Jamaica
Japan
Jordan
Kazakhstan
Kenya
Kiribati
Kuwait
Kyrgyzstan
Laos
Latvia
Lebanon
Lesotho
Liberia
Libya
Liechtenstein
Lithuania
Luxembourg
Macedonia
Madagascar
Malawi
Malaysia
Maldives
Mali
Malta
Mauritania
Mauritius
Mexico
Micronesia
Moldova
Monaco
Mongolia
Montenegro
Morocco
Mozambique
Myanmar
Namibia
Nauru
Nepal
Netherlands
New Zealand
Nicaragua
Niger
Nigeria
North Korea
Norway
Oman
Pakistan
Palau
Palestine
Panama
Papua New Guinea
Paraguay
Peru
Philippines
Poland
Portugal
Puerto Rico
Qatar
Romania
Russia
Rwanda
Saint Kitts and Nevis
Saint Lucia
Saint Vincent And The Grenadine
San Marino
Sao Tome and Principe
Saudi Arabia
Senegal
Serbia
Seychelles
Sierra Leone
Singapore
Slovak Republic
Slovenia
Solomon Islands
Somalia
South Africa
South Korea
Spain
Sri Lanka
Sudan
Suriname
Swaziland
Sweden
Switzerland
Syria
Tajikistan
Tanzania
Thailand
Togo
Tonga
Trinidad and Tobago
Tunisia
Turkey
Turkmenistan
Tuvalu
Uganda
Ukraine
United Arab Emirates
United Kingdom
United States of America
Uruguay
Uzbekistan
Vanuatu
Venezuela
Vietnam
Wallis and Futuna
Western Samoa
Yemen
Zambia
Zimbabwe
Email:
Is corresponding author or not (one only):
Author
2
Name:
Affiliations:
Region:
Afghanistan
Albania
Algeria
America
Andorra
Angola
Antigua and Barbuda
Argentina
Armenia
Aruba
Australia
Austria
Azerbaijan
Bahamas
Bahrain
Bangladesh
Belarus
Belgium
Belize
Benin
Bermuda
Bhutan
Bolivia
Bosnia and Barbados
Bosnia and Herzegovina
Botswana
Brazil
British Virgin Islands
Brunei
Bulgaria
Burkina Faso
Burundi
Cambodia
Cameroon
Canada
Cape Verde
Cayman Islands
Central African Republic
Chad
Chile
China
China(Hong Kong)
China(Macao)
China(Tai wan)
Colombia
Comoros
Costa Rica
Croatia
Cuba
Cyprus
Czech Republic
Democratic Republic of the Congo
Denmark
Djibouti
Dominica
Dominican Republic
Ecuador
Egypt
El Salvador
Equatorial Guinea
Eritrea
Estonia
Ethiopia
Falkland Islands
Faroe Islands
Fiji
Finland
France
Gabon
Gambia
Georgia
Germany
Ghana
Gibraltar
Greece
Grenada
Guatemala
Guinea
Guinea-Bissau
Guyana
Haiti
Honduras
Hungary
Iceland
India
Indonesia
Iran
Iraq
Ireland
Israel
Italy
Jamaica
Japan
Jordan
Kazakhstan
Kenya
Kiribati
Kuwait
Kyrgyzstan
Laos
Latvia
Lebanon
Lesotho
Liberia
Libya
Liechtenstein
Lithuania
Luxembourg
Macedonia
Madagascar
Malawi
Malaysia
Maldives
Mali
Malta
Mauritania
Mauritius
Mexico
Micronesia
Moldova
Monaco
Mongolia
Montenegro
Morocco
Mozambique
Myanmar
Namibia
Nauru
Nepal
Netherlands
New Zealand
Nicaragua
Niger
Nigeria
North Korea
Norway
Oman
Pakistan
Palau
Palestine
Panama
Papua New Guinea
Paraguay
Peru
Philippines
Poland
Portugal
Puerto Rico
Qatar
Romania
Russia
Rwanda
Saint Kitts and Nevis
Saint Lucia
Saint Vincent And The Grenadine
San Marino
Sao Tome and Principe
Saudi Arabia
Senegal
Serbia
Seychelles
Sierra Leone
Singapore
Slovak Republic
Slovenia
Solomon Islands
Somalia
South Africa
South Korea
Spain
Sri Lanka
Sudan
Suriname
Swaziland
Sweden
Switzerland
Syria
Tajikistan
Tanzania
Thailand
Togo
Tonga
Trinidad and Tobago
Tunisia
Turkey
Turkmenistan
Tuvalu
Uganda
Ukraine
United Arab Emirates
United Kingdom
United States of America
Uruguay
Uzbekistan
Vanuatu
Venezuela
Vietnam
Wallis and Futuna
Western Samoa
Yemen
Zambia
Zimbabwe
Email:
Is corresponding author or not (one only):
Abstract :
*(250~1000 words)
The Middle Paraná River inland waterway “Santa Fe – Confluence” and flows entirely through Argentina country in South America. This is a stretch of the well-known Paraguay – Paraná Inland Waterway that is regional, flows through another four countries: Brazil, Bolivia, Paraguay, and Uruguay and finally reaches deep waters in the Río de la Plata next to the sea. Average discharge of this stretch of the Middle Parana River is about 15000 m3/s (mean waters condition). Physical characteristics and depths along this section of Paraná River determine what kind of vessels can navigate and accordingly is determined the allowed draught. From Confluence downstream to Santa Fe Port navigation is allowed with vessels loaded up to 10 ft. and fluvial traffic is developed by tug pushing convoy barges mainly and self-propelled units to a lesser extent. Design depth of the waterway also includes additional 2 ft. for under keel clearance. From October 2010 to September 2021, both dredging works and installation and maintenance of modern aids to navigation system were granted to HIDROVIA S.A. Company. EMEPA S.A. was the corporative partner of HIDROVIA SA in charge of the installation, maintenance and management of the aids to navigation system that included buoys and beacons according IALA-B guidelines, a network of automatic water level measuring stations and the installation of antennae for the reception of AIS: Automatic Identification System signals. Given the intense morphological dynamics of the river in the section Santa Fe - Confluence, the contract stated that it was no suitable to keep a fixed channel design by means of permanent dredging works. Instead it established that dredging could only be done when and where it is not possible to maintain the channel design by readjustment its profile with partial changes in the trace and direction of the waterway axis. That was how EMEPA S.A. succeeded in implementing the continuous management of the channel design to optimize navigability in the Santa Fe – Confluence waterway. This solution aimed not only to reduce costs but also to minimize environmental impacts in the river system reaching a sustainable management of the waterway. This requirement could be reached following the river thalweg migration with the channel axis, but the fluvial activity was so high that it demanded a continuous labor-intensive management to succeed. It required in annual average about 50 trace changes of the channel design that were materialized successfully by EMEPA S.A. This paper exposes how it was worked in the Paraná waterway Santa Fe – Confluence to maintain the designed navigational channel without dredging works by means of four basic steps: frequent bathymetric surveys, follow AIS vessels tracks, a special coordination of logistic works in the river with the technical team and buoy vessels crew and an effective communication plan with stakeholders involved. Since 2019, the channel design in this waterway has been sustainably achieved with no dredging works.
Key words:
(max: 5)
Reference no.
Slides:
click to download
Reject
Accept
Confirm Submission